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EXECUTIVE SUMMARY

Although it has long been recognized that coastal plants
serve to maintain and even develop sand dunes there has been
surprisingly little study of the underlying aerodynamic
processes. In regulating the development of Florida's
coastal areas engineers in the Florida Department of Natural
Resources Division of Beaches and Shores need to be able to
‘make assessments of the relative roles of a wide range of
vegetation types on the retention of sand. As a result of
this need, a study has been conducted to establish the
controlling physical relationships and to provide a
quantitative method of determining the sand trapping
capacity of coastal vegetation. The study was intended to
advance cur understanding of these subjects quickly and
effectively. Consequently, this first phase of the work was
directed toward the development of theory and methods of
analysis using parameter measurements from the published
literature. It is expected that subsequent research will
provide other analyses and measurements based on the
approach developed in this first phase.

There are several theories and predictive equations for sand
transport by wind (i.e. aeclian transport) for loose, dry
sand on a flat horizontal surface; exposed to a fully
developed turbulent shear boundary layer. All contain
empirical constants and coefficients to some degree. Recent
studies have demonstrated that most of the competing
relationships produce similar results. As a result the
theory developed by Bagnold was adopted as the method of
computing sand transport by the wind provided that the sand
grain size, density, and sorting are known. Bagnold's
equation relates the mass flux of sand to the friction
velocity of the wind and this must be known (measured, or
calculated).

Bagnold's equation is used to compute the sand transport on
a flat open beach as a basis of comparison to changes caused
by the interaction of vegetation with the air flow. These
interactions are characterized by a three tiered boundary
layer over and within the vegetated area. Above the plant
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canopy, a shear boundary layer similar to that over the open
beach, is pictured. Typically the vegetation causes higher
drag than bare ground so that there is a sharper vertical

- profile of the mean horizontal wind in this layer than the
bare ground equivalent. The lowest portion of this velocity
profile projects into-the upper portion of the vegetatlon
canopy.

Within the canopy the turbulence arises largely as a result
of the air passing through the foliage. The vertical
velocity profile is altered to an exponential shape matched
at the top of the vegetation to the overlylng shear boundary
layer profile.

Near the ground there is a third zone within which another
“shear boundary layer is developed. Sand transport takes
place in this layer.

A series of equations are formulated to represent these
physical processes. They are used to compute the sand
transported within, or beneath, a plant canopy for set wind
conditions. These results are compared to corresponding

- bare ground results.

Much of the approach is related to previous research
concerning air flow above and within crops and forests.

Many of the controlling relationships are constrained by
simplifying assumptions. These relationships also depend on
the evaluation of air flow parameters which can only be
experimentally determined. These measurements have not been
conducted for coastal plants. In order to provide working
estimates of these parameter values for coastal plant all
accessible data concerning measurements made for all types
of plants was assembled. The physical characteristics of
both the measured and unmeasured types of plants were
tabulated and used to assign aerodynamic coefficients to the
coastal plants based on their similitude with the measured
group. : ’

The major portion of this study was devoted to developing a
method of comparison of the sand transport in different
types, sizes, and densities of coastal vegetation presuming
a single plant type and a fully developed boundary layer for
each analysis. However, the transitional boundary layer
conditions were also considered and incorporated into a
special analysis. This analysis is appropriate to the case
of narrow lines of vegetation, oriented across the wind.

The case of mixed plant assemblages is also considered.

- Included in the recommendations for future work are: 1)
Expansion of the approach tc include larger horizontal
scales and sloped terrain. 2) Development of better
aerodynamic coefficients for coastal plants.
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INTRODUCTION

Natural coastal dune vegetation generally survives in an
environment which requires special adaptation. Two features of
this environment are the sandy, humus-poor soil and the high salt
content of the air, soil and soil water. The plants which are
adapted to this environment tend to stabilize its physical
features by trapping and holding wind-blown sand.

The beneficial nature of coastal vegetation in trapping and

. holding wind-blown sand has long been recognized and there are a
large number of qualitative statements to this effect in the
literature (Jagschitz and Bell 1966, Savage and Woodhouse 1968,
Gage 1970, Dahl et al 1975), often supported by observations.
However, the physics of the interaction of coastal plants and
sand transport has remained poorly studied. Without a
quantitative study of these effects it is not possible to
understand how effective different types and distributions of
plants are in causing deposition of wind-blown sand and in
preventing erosion.

For these reasons a study was conducted of the physical effects
of vegetation on coastal dune systems in Florida. The study was
- proposed as an initial exploration of this subject and was
therefore based on existing literature as opposed to field or
wind tunnel work. The objectives of the project were:
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- carry out a comprehensive literature search concerning the
natural dune plants of Florida, the role of vegetation in
stabilizing sand dunes, and the theoretical understanding of
the direct effects of vegetation on sand transport by wind;

-develop an understanding of the effect of the various
physical attributes of plants in their relative abilities to
trap and retain sand on, and near the beach;

- provide a basis of comparison for assessing the relative
effectiveness of vegetation in promoting the stability and
growth of coastal sand dunes;

- develop a procedure to predict the potential magnitude and
rate of change intle 1178 sahdred in coastal dunes as the
result of changes in the vegetation.

The aim of this study is to provide coastal engineers and
scientist working for the Division of Beaches and Shores with
methods for assessing the effects of proposed changes in coastal
vegetation on the natural functioning of the coastal systems. A
major emphasis is on processes resulting in long-term sand
storage which provides a buffer against erosion.

It was soon discovered that a natural division of processes
occurs based on the characteristic coastal length scales under
consideration. These generally divide into a local scale of
features and processes acting over lengths on the order of 10s to
100s of feet and a coastal scale with lengths of thousands of
feet to miles. Two factors influenced the study to concentrate
on the local scale. First, most of the prcblems of interest to
the Division of Beaches and Shores arise from individual lot
permit issues and these lots are typically of the local length

- scale. Secondly, it proved feasible to develop an approach to
evaluating the effects of vegetation on wind-blown sand transport
at this scale in considerable detail. As a consequence, the
major portion of this report is devoted to local scale processes,
with coastal scale processes being treated only briefly towards
the end.

DESCRIPTION OF PROCESSES

Near-Ground Atmospheric Flow

The atmosphere flows in response to pressure gradients resulting
in the wind. The frictional effects of the earth's surface are
confined to a zone (or boundary layer) which is generally less
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than a couple thousand feet in thickness. The major frictional
processes occur in a subregion of this boundary layer where there
is thought to be a constant mean horizontal shear stress. This
layer is typically a few hundred feet thick.

If the mean wind speed (u(z)) is measured at several heights (z)
in the lower portion of the atmospheric boundary and plotted they
- tend to yield profiles of similar form to that shown in Figure
la. The rate of increase of wind speed with height (3u/3z) is
greatest near the ground and decreases with height. Such curves
appear as straight lines when the wind speed is plotted against
the log of the height (Figure 1b). The general form of this
relaticnship is,

u(z) = a ln{z) + b

where a and b are independent of z. It is usual to replace b
with -a ln(z,) where z,£ 1s a roughness parameter equal to the
'small height at which the logarithmic equation predicts zero
velocity. This is typically one order of magnitude smaller than
the physical height of the surface roughness elements. From this
it follows that,

u(z) = a ln(z/zy)

Differentiation of this equation with respect to z yields,

which shows that the vertical gradient of the wind is. inversely
proportional to the height above the ground. This has been taken
to indicate that the dimension of friction-driven turbulent
eddies is directly related to the distance above the surface
because larger eddies can be expected to be more effective in
vertical mixing than smaller ones.

Another useful parameter is the friction velocity (u,) which is
defined as,

u = (t/p)%°



where t is the vertical shear of horizontal momentum in the
boundary layer and p is the air density. This quantity has the
dimension of veloc1ty which explains the name 'friction
velocity! :

The parameter "a" in the expression for velocity, is commonly
assumed to be proportional to u, and both are independant of
height. The constant of proportionality is k, called von
Karman's constant, and has a value of 0.4.

a = u,/«k

Thom (1975) states that the product kz can be identified with the
mixing length (1,) or effective eddy size at the level z, by the
expression,

With the appropriate substitution for the parameter a, the
equation for the velocity profile in the constant stress
frictional boundary layer becomes,

h(z) = (U,/K) ln(z/zo)

When the value of von Karman's constant is included and the
natural logarithm is replaced with the common logarithm this
equaticn is written as,

u{z) = 5.75 u, logw(z/zo) .

The Physics of wind-Blown Sand

Our knowledge of aeolian, or wind-blown, sand transport dynamics
has developed slowly as the result of research which has been of
scattered intensity over the past 50 years. Much of what is
presently known is based on empirical measurements and simplified
dynamics. Recent field studies have shown that although there
are competing theories they are similar and several produce
results which show reasonable agreement w1th measured data
(Horikawa et al 1986)



The process of aeolian transport of loose sand on a large flat
horizontal surface is easily described. Gravity stabilizes the
surface grains in their places against fluid forces which tend to
entrain and move them. Therefore, there is a threshold wind
intensity below which no sand transport occurs. Above this
threshold individual grains are dislodged and put into various
types of movement including upward and downwind displacement due
to the fluid forces, downward movement due to gravity, and
various bouncing, rolling and sliding motions. All this is
generally called grain saltation.

The presence of grains saltating in the lower portion of the
boundary layer changes its behavior. Figure 2 shows profiles of
the mean horizontal wind speed for conditions below and above the
grain entrainment threshold. The height ordinate is a log scale
so the profiles appear as straight lines. The three profiles
(corresponding to three different mean wind speeds) for sub-
threshold conditions intersect with the height axis at a common
point above the ground surface. This is taken as the base of the
constant stress portion of the turbulent boundary layer. Below
this, the forces of molecular viscosity become increasingly
important in the so-called laminar sublayer. The height of the
zero intercept of these profiles is the roughness height (z,).

Figure 2 also shows profiles for three wind conditions which are
above the grain threshold conditions. These also intersect at a
common point called the focal point. 'This point is displaced
upward from z 2 to a new height designated as z'. The focal point
is also displaced outward from the ordinate by a speed designated
as u'. The change of z_ to z' as the grain movement threshold is
exceeded indicates that the vertical divergence of stress in the
boundary layer increases and wind energy is dissipated more
rapidly per unit area of the sand bed.

A consequence of these changes in the structure of the boundary
layer is that the equation for mean wind speed as a function of
height,

u(z)

= 5,75 u, logm(z/zo) {below threshold)}
is recast to,
u(z) = 5.75'u, logyy(z/z') + u' {above threshold}.

Various empirical'felationships have been developed from wind
tunnel experiments that relate these flow parameters to
characteristic sand grain parameters. Bagnold (1954) suggested,
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Z, = d/30
and Zingg (1952) proposed,

z' = 10 d and

u|

(894 cm/sec mm) d ,

where d is.the sediment grain diameter.

Even though Zingg's equations are empirical they are based on
extensive wind tunnel measurements. The above expression for Zgr
z', and u' are not well studied but they are commonly applied.
Some comfort may be taken from a recent review of aeolian sand
transport theories and measurements by Horikawa et al (1986)
which indicates reasonable agreement between measurements and
computed transports based, in part, on these empirical.
relationships. _

These equations permit the velocity profile relationship to be
rewritten to solve for u, in terms of a single wind speed
determination at a known height and the mean sand grain size;

u, = u(z)/ 5.75 log,y(z/z,) (no sand transport},

U,

1

(u(z) - u')/5.75 logy(z/z') {sand in transport}.

These expressions indicate that the wind conditions which define
the threshold of grain movement should be expressed in terms of a
critical value of the shear velocity (Weyr4) - The vertical
profile of the wind changes depending on éhe condition of the
sand bed so that the shear stress applied to the bed cannot be
directly associated with a unique wind speed.

Several investigators have developed methods tc define and
predict the values of the critical shear stress (u, it) needed to
initiate grain transport (Bagnold 1941 and 1954, Iwagaki 1950,
Horikawa and Shen 1960, Tsuchiya and Kawata 1975, and Nickling
1988). These relationships are also entirely based on empirical
data. The one shown on Figure 3 from Horikawa and Shen (1960)
is, in part, based on earlier observations by Iwagaki (1950) and
Bagnold (1954), and provides an adequate summary of these
observations. It relates U, oy to @ parameter comprised of the



square root of the product of the mean grain diameter and the.
grain density.

There -are also several expressions available to compute aeolian
sand transport once the threshold conditions have been exceeded.
These are also based largely on measured data but have varying
degrees of associated physical explanations. Horikawa et al
(1986) reviewed these relationships and conducted a comparison
based on available measured data. They found that the various
expressions derived by Bagnold (1941 and 1954), Nakashima (1979),
Kawamura (1951), and Horikawa et al (1983) all produce similar
results and are in reasonable agreement with measurements.

The physics of Bagnold S equatlon for aeoclian sand transport are
readily explalned Figure 4 shows a definition sketch of a
control volume in which grain saltation occurs. The volume has a
unit width and a length (L) defined by the average distance a
saltating grain moves in a unit time increment (At). That is,

L = U, At,

where U; is the mean gréin speed. Bagnold likened the aeolian
sand transport process to the ordinary process of sliding
friction and generalized the details of the various fluid forces
acting on the grains by assuming that they are proporticnal to
the shear stress per unit area (z,) Thus the net downward force
acting on the sum of the disperse& gralns in the control volume
is proportional to the fluid shear stress acting on the bed. The

net downward force acting on the dlspersed saltating grains (£y)
is,

fy = Mg = (QAt)g

where Q is thévmass flux of grains through the box. The fluid
shear stress acting on the bed (f;) is the shear stress per unit
~area multiplied by the area of the base of the control volume,

f. = T, (Ught) .

If K is a constant of proportionality then Bagnold's relationship
can be expressed as,

(Q At)g = K T (UAL),



Qor

where p, is the air density. Using the definition of the shear
velocity (u,) this becomes,

2
Q = K (p,/g9) u” Ug.

If it is assumed that the average grain speed in the controlb
volume is proportional to the shear veloccity

Ug = k u,, .

then Bagnold's relationship becomes,

0 = Kk (p,/g) ul.

Bégnold (1954) used experimental data to show,
K k = B (d/D)?®

where B is a standard reference grain diameter of 0.25 mm and B
is a parameter controlled by the sand size gradation (sand size
frequency distribution). He offers the following:

B =1.5 uniformly graded sand,
B = 1.8 naturally graded sand, and

B = 2.8 broadly graded sand;
to which Cooke and Warren (1979) have added,

| B = 3.5 for pebbly sand.

A substitution produces Bagnold's classic equation,



Q = B (p,/9)(d/D)"%,°

This equation is commonly used for computing aeclian sand
transport but it must be kept in mind that it is derived for
loose dry sand on a flat horizontal surface. Tsoar (1974),
Hunter et al (1983), and Hotta (1984) report marked increases in
threshold velocities and decreases in sand transport flux due to
soil moisture in excess of 1%.

Nickling (1984) has examined the effects of surface salt
concentrations on the grain entrainment threshold values. He
reports that even very low concentratiocns significantly increase
the entrainment threshold. Small scale bedforms such as sand
ripples also alter the threshold and transport relationships.

" Larger scale slopes, such as those associated with coastal dunes
effect aeoclian transport in several ways. First’ the slope can
either increase or decrease the entrainment threshold values
depending on their alignment relative to the wind. These slopes
also create horizontal pressure gradients due to form drag and
these gradients alter the structure of the near-ground vertical
velocity gradient. As the profile of the lower turbulent
boundary layer changes so does the magnltude of the shear stress
applied to the sand bed

These complicating effects have been studied to varying degrees
but there is no complete theory currently available which allows
comprehensive treatment of their combined effects. 1In the '
absence of this it is usually best to evaluate problems using a
simple theory such as Bagnold's while making allowances for the
untreated factors.

Air Flow in a Plant Canopy

In a previous section the idea that the characteristic scale of
"turbulent eddies in a shear flow is controlled by the proximity
of the ground was presented. The logarithmic mean velocity
profile follows as a consequence of this 'structure' to the
turbulence. Air flow through a vegetated area is different
because the plants create turbulent wakes which are the dominant
eddies within most canopies. Both the intensity and the scale of
the turbulence is changed by the plants.

Clearly there must also be regions above the plants and very
close to the ground where the structure of the turbulence is not
dominated by the plants and resembles the basic shear flow
conditions. This means that there should be at least three sub-
regions in the turbulent boundary layer.. Well above the plant
canopy the flow is such that the stress in constant, similar to
that over bare ground but adjusted to a greater roughness height.
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This sub-region is coupled to the boundary layer flow within the
plant canopy whose turbulence is greatly influenced by the
vegetation. Finally there is the near-ground sub-region where"
the scale of the turbulent eddies is again mainly controlled by
the proximity of the ground and where a second constant stress
layer occurs. Transition regions can be expected between these
sub-regions. :

Inoue (1963), Cionco (1971), Thom (1975%), and others have
examined the dynamics of turbulent flow in vegetatlon canopies.
They have demonstrated that for a simple steady and fully

" developed flow with a neutrally-stable density structure, which
is not influenced by adverse horizontal pressure gradients and is
moving through a canopy with a nearly uniform vertical
distribution of plant material, the vertical velocity profile has
an exponential shape. - This can be shown with the following
explanation.

There are two types of shear stresses acting on the fluid in the
control volume. One at the boundary due to the surrounding
fluid. The other is distributed through the control volume and
is due to the vegetation. Because the shear forces on the fluid
due to vegetation are distributed (assumed uniformly) throughout
the canopy it is convenient to treat them as "body" forces. The
force per unit volume is thus: :

Shear Force/unit vol.

Shear Stress/unit depth

2
1/2 Cd p AU

where
_Cd = drag coefficient
= mass density of air
A = vegetation surface area (all the leaves and branches)
per unit volume
u =z horizontal velocity.

A simple force balance on the fluid within the control volume (1n
the absence of horizontal pressure gradients) results in

dt 1 2.
Tt 3z Az - T = 5 Cd p Au” 'dz

or
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1 2
Iz =3 Cd p Au

where

Tt = the fluid shear stress acting on the fluid in the
control volume at the lower boundary.

If we now express T as

QE
w dz

where
Ky = eddy viscdsity and
Ew = mixing length ;n z-directicon

then the above equation becomes
dz d 2¢du,2
& - a3z u(E@)]

If 0w is approximately constant as suggested by velocity and
turbulence measurements within canopys

dv _ 2 (,d a%u
= by )
dz dz dzz
1 2
=3 CqPAu
or
ili[dzu] =pcd A'u2
dz d22 4 2%
Cd A : .
Let C = P > and assume that C = f(u,z). .
4 0y
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du
Then =

which is a second order, nonlinear, ordinary differential
equation. The solution should be of the form,

u = K'erz .

. Taking the appropriate derivatives,

and — =K' re

dzu 2 rz
dz2

and substituting these into the ODE results in

(x'reF?) (k' r2ef?) = c(k'eF?)2
or
K|2r392rz - CK,Zlez
or .
r = C1/3 - [pCd A]l/3
432
W
so
1 1 ,1/3
T = [chdA ——i] .
L
Thus
u = K'ef% = kv exp [pCdzA]1/3 -

w

The boundary conditions are,

Y(z=H) T “(H)
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or

. -rH
K' = u(H) e
and
o r(z-H) rH(z/H-1)
u = u(H)e » 'U(H)
let rH = a
z
u = u(H)ea(ﬁ_l)
where
1 1 41/3
G=H[chdA;'—2-) .
w

In this analysis the leaf area density (A) combined with the
plant bulk aerodynamic drag coefficient (Cy) are used to
parameterize the plant's frictional effects. The leaf area
density can be determined from a more standard botanical (and
agricultural) parameter known as the leaf area index (LAI) which
is the sum of the area of one side of all of the leaves on a '’
plant divided by the lot area (ie. total area of ground
‘surrounding the plant). The leaf area density can be evaluated
by dividing the LAI by the average plant height (H). This is
also designated the PAI so that,

PAT = A/2.

The presence of the vegetation and the air moving through it
effects the overlying boundary layer conditions. As illustrated
on Figure 5 the vertical profile of the wind has a logarithmic
profile starting a short distance above the top of the
vegetation. Cionco (1971) performed regression analysis on
numerous measured wind profiles above different types of
vegetation and established that they could be fit with the same
logarithmic function as an ordinary shear profile, provided that
a zero plane displacement, d, is introduced. Using this
parameter the equation of the mean horizontal velocity profile
above the vegetation becomes,

u(z) = (u/k) 1ln((z-d)/z,))
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The zero plane displacement is typically a major fraction of the
vegetation height. The roughness parameter (z,) tends to be
considerably higher for vegetation than for bare ground
indicating that the vertical divergence of horizontal momentum
above the vegetation is higher.

Bruin and Moore (1985) have developed an expression for the
velocity profile in the transition region between the top of the
exponential wind profile in the vegetation canopy and the
overlying logarithmic zone. This transition zone is thought to
extend to a distance of about twice the average plant height (H)
above the ground over tall vegetation such as trees. However,
this transition zone is not well studied and it is commeon
practice to match the logarithmic and exponential velocity
profiles presuming a sharp interface at the top of the
vegetation.

The near-ground constant shear sub-region of the boundary layer
is poorly studied. No published measurements have been found for
this zone. However, the measured velocity profiles within plant
canopies given in Cionco (1971) indicate that the exponential
profile extends from the top of the vegetation to about 15% of
its height. Although the relationship between the thickness of
the near-ground logarithmic layer and plant parameters certainly
contains planting density, vertical foliage distribution, and ’
other factors in addition to plant height, this simple estimate
is adequate as an initial estimate.

In summary, the shear-dominated atmospheric boundary layer in a
fully developed flow (remote from the boundaries of the
vegetation) is characterized by three sub-regions which can be
described by either logarithmic or exponential velocity profiles
which match at defined levels. The aerodynamic effects of the
vegetation can largely be represented by three parameters: 1) the
roughness length (z,), 2) the zero plane displacement (d), and 3)
the attenuation parameter of the exponential profile (a).

As will be discussed later, it is necessary to know these
parameters. for the particular vegetation of interest because they
vary significantly for different plants. There are no
measurements in the literature for coastal vegetation so the
principal of similarity, which is commonly used in studying flow
phenomena, has been resorted to for estimates of values for
coastal vegetation.

A sensitivity analysis can be used to establish the relative
importance of the vegetation aerodynamic parameters in evaluating
changes in the shear stress applied to the ground and hence the.
change in sand transport relative to bare ground. The wind
profile equations are combined and written so the wind speed at
the top of the near-ground logarithmic layer (uy) is expressed in
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terms of the vegetation parameters and the wind speed (u.) at a
reference height (z.) high above the plant cancpy. That is,

on ((H—d)/zo) exp (-0.85q)

Y9 T T eI ((Zree-d) /20) ]

This is differentiated with respect to the vegetation aerodynamic
parameters.

au, 0.85
aa u

~[%] exp (-0.85a)
ref o 7

zo, [en ((u,  -d)/(H-d))]

au o]
f=g - - ex -0.85a
3Z2q uref N2‘ P )
sug _ exp (-0.85a) [(N/(H-d)) - (M/(uref—d)).]
8d” Yref N2
dug _ _ _exp (-0.85a)
aH U g (B-d) N

“ where, M = &n ((H-d)/z)

N = ¢n ((uref—d)/zo).

When these partial derivatives are evaluated for extreme
parameter values and a 50-m reference height, it was determined
that the plant roughness parameter (z,) is more important than

the exponential velocity profile attenuation parameter (a). The
zero plane displacement (d) and plant height (H) are less
important than (a). This provides some guidance concerning the

application of similarity-based comparisons between plants where
measurements are available (generally crops and forests) and
coastal plants.

~ The process of estimating the vegetation aerodynamic parameters
for the coastal plants of Florida, and the resulting values, are
given in Appendix A.
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METHODS OF ANALYSIS

The role of vegetation in trapping sand and preserving sand
storage within beach and dune systems can be analyzed using the
concepts explained in the previous section. In many cases there
is a rapid transition of near-ground wind velocity and boundary
shear stress from bare sand to a vegetated zone. At the
vegetation line there is a transition width in which the boundary
layer exhibits nonuniform conditions as it adjusts to the
presence of the vegetation. This transition region has a length
on the order of 10 to 30 times the average vegetation height.
This may be a distance of only a few 10s of feet for short grass
and considerably longer for coastal forests. Therefore, there
are two major conditions to consider. Broad zones of coastal
vegetation permit the re-establishment of uniform flow
conditions. Narrow vegetation zones only exhibit non-uniform
flow conditions. -

Fully Developed Flow

The fully developed flow case provides a good beginning for the
analysis of how vegetation brings about changes in aeolian sand
transport for several reasons. First, it provides a relatively
simple way to address such basic questions as: How great a change
in sand transport is caused by various types and densities of
vegetation? What spacing or density of one vegetation type is
equivalent to the spacing of another vegetation type with respect
to its capacity to trap and retain wind blown sand? How do the
sand trapping capacities of various vegetations change with wind
speed and plant spacing? To what degree can a coastal forest be
thinned out to provide a better view without seriously impacting
the sand trapping capacity of the natural condition?

A second reason for concentrating on the analysis of uniform flow
conditions is that they have been more fully studied in
agricultural and military applications so that there is a body of-
knowledge that can be adapted for application to coastal
.engineering problems. There is also a substantial difference in
the approach that agricultural scientists have taken to uniform
and non-uniform conditions with the former having more rigor.

Figure 6 illustrates a simplified version of the envisioned
conditions. As the air flow enters the zone of vegetation the
near-ground flow is changed as the boundary layer (b.l.)
establishes a new equilibrium. If the wind is strong enough to
transport sand on the beach, and the vegetation causes this '
transport to cease, then deposition will occur in the transition
zone. A similar, but reversed pattern develops on the downwind
side of the vegetation zone. Here erosion can occur when the
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upwind sand supply is blocked by the vegetation. Clearly these
general patterns will reverse for an offshore wind.

In order to address the types of questions examplified in the
introduction to this section a straightforward method of analysis
can be applied. Figure 7 provides a definition sketch. The
problem is started by specifying a 10-m wind speed. This wind
speed, either measured at, or corrected to, the height of 10 m
above the ground is used because it is a standard measurement
used by most meteorologists. The mean sand grain size, the sand
size gradation, and the sand grain density must also be specified
as environmental inputs.

Several vegetation parameters must also be known. These include
the average height, characteristic plant spacing, spacing or
density of plant in the area of interest, and the vegetation
aerodynamic parameters (ie. , d, and a). The vegetation
aerodynamic parameters are no% available from the literature or
. previous studies but estimates for these are available in
Appendix A of this report for most of Florida's common coastal
plants.

The 10-m wind and sediment information are used to compute the
fluid shear stress applied to the sand bed by the wind and to
compare this to the critical shear stress for grain entrainment.
If this is not exceeded then the analysis is not of further
interest. If the threshold is exceeded then a second computation
is made using the new roughness parameter (z') to compute the

. friction velocity (u,). This is used . to compute the sand mass
transport flux using Bagnold's equation. .This prov1des the bare
sand transport rate as a basis of comparison.

The logarithmic veloc1ty profile equation is then used to
calculate a reference wind speed (Upge) high above the ground
surface (a reference height of 50 m 1s convenient) based on the
-10-m value. It is reasonable to assume that this value will

- remain unchanged over the vegetation, at least for local scale
analyses.

The 50-m wind speed provides a starting point for the analysis of
air flow over and within the vegetation canopy. The vegetation
parameters z, and d are used with the modified velocity profile
equation to compute the wind speed at the top of the vegetation
(uy). This can be used with the exponential velocity profile and
the vegetation attenuation parameter (a) to calculate the
velocity at the level of the top of the near-ground log layer

(z = 0.15H).. Finally, the shear velocity can be calculated with
another application of the logarithmic velocity profile so that
Bagnold's equatlon can be used to compute the mass flux of wind
blown sand in the vegetated area.
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Transitional Flow

Although the procedures for analyzing the effects of coastal
vegetation using vertical wind profiles and uniform flow
conditions are quite useful in guantifying the effects of
different plant types and densities on aeolian sand transport,
deposition and erosion, it is clear that the width of many
coastal vegetation zones is not sufficient for this type of
analysis to be entirely satisfactory. This is particulary true
for taller vegetation as the width of the transition regions is
typically 20 to 30 times the plant height. For these reasons a
method has been developed to account for long narrow vegetation
zones, generally parallel to the coast. These zones may be
either natural or planted. They tend to look and function like
‘the windbreaks and shelter belts common in inland agricultural
areas. Again, there is no publisled information regarding the

" physical effects of these narrow zones on the coastal environment
and the information which has been used is adapted from the
agricultural engineering literature.

The use of vegetation as windbreaks and shelter belts dates from
the time of the ancients and is still widely used in agriculture
to shelter crops from strong winds that inhibit growth. They are
also used to reduce evapo-transpiration losses or to enhance O
and CO, exchange, the former by reducing the turbulence in the
sheltered area and the latter by increasing it with appropriately
designed windbreaks. Consequently, there have been many studies
of windbreaks and different types of optimizations have been
sought. One common definition of an optimized windbreak in
agricultural engineering is that which provides the greatest
near-ground reduction of wind speed over the longest downwind
distance. This is a definition which promotins sand retention in
the coastal environment and thus, is adopted for these analyses.

In order to understand why a narrow line of vegetation (or a
single sand or snow fence) is quite effective in trapping wind
blown sand it is necessary to understand its effect on the
atmospheric boundary layer. The actual effects are complex and
no analytic solution of the governing equations has been
developed. As a result, a combination of wind tunnel
experiments, field measurements, and some numerical modeling have
been used to develop a descriptive understanding of the
underlying processes. Figure 8 shows the pattern of developing
boundary layers which form as the result of a low narrow, wedge-
shaped non-porous barrier in a thick boundary layer flow (ie. the
thickness of the boundary layer is many times the height of the
barrier). Plate (1971), and many others, have pointed out that
the flow disturbance is very dependant on the upstream velocity
profile, well before it encounters the barrier. A simple uniform
logarithmic velocity profile is pictured in Figure 8 as an
initial condition.
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The flow disturbance begins a distance upstream of the barrier
(typically 3 to 5 times the height of a non-porous barrier). A
persistent counter-flowing eddy often forms upwind of the '
barrier. A zone of flow separation begins at the top of the
barrier and extends many times the height of the barrier
downstream. This zone of separation is outlined by a streamline
- defined by, ’ '

Up/Uye = 0.5,

where u, is the velocity in the lee of the barrier and u is the
velocity at a corresponding height in the undisturbed boundary
layer upstream of the barrier (Plate, 1971). There is a
transition region, centered on this bounding streamline, between
the region of barrier influence (#2 on Figure 8) and a 'bubble’
of sheltered air flow (#6 on Figure 8) in the lee of the barrier.
The point where the bounding streamline intersects the land
surface is defined as the reattachment point. This marks the
downwind limit of most zones of interest in agricultural
engineering because most of the sheltering occurs upwind of the
reattachment point. However, from the point of view of
understanding coastal processes it must be noted that the region
of the re-establishing boundary layer (#3 on Figure 8) is still
an area where the near-ground wind field is substantially altered
from the undisturbed upwind reference condition. This means that
the barrier can exert an influence on the sand transport patterns
on the downwind lengths comparable to the coastal length scale.

Several other .features shown on Figqure 8 are significant. As the
air flow encounters the region of influence of the barrier it is
deflected upward and over the sheltered 'bubble'. Indeed, most
non-porous barriers create a counter-flowing eddy on their upwind
sides which has a near-ground flow opposite the regional wind
direction. 1In strong winds the sand transport is arrested with
the deposition taking place several barrier heights upwind.

Downwind of a non-porous barrier another counter-flowing eddy
forms in the sheltered bubble. In extreme cases this flow is
strong enough to transport sand in the direction opposed to the
regional wind and to form a blow-out depression. It has also
been noted that the reattachment point is relatively close to the
- barrier (about 10 H) if it is non-porous.

Narrow belts of vegetation such as windbreaks and shelter belts
can be very dense and thus approach the condition of a non-porous
barrier. However, more generally, they have varying degrees of
porosity and therefore provide 'leaky barriers'. Although the
overall pattern of boundary layer disturbances shown on Figure 8
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is generally also valid for porous barriers, there are some
important differences.

One difference is that the air flow leaking through the barrier
reduces the velocity contrast above and below the streamline
bounding the sheltered bubble and thus the amount of shear-driven
turbulence in the transition region ‘is reduced. This has the
effect of actually reducing the turbulent exchange of horizontal
momentum across the bounding streamline and stretching out the

. downwind extent of the sheltered region. Furthermore, the porous
barrier substantially reduces the magnitude of the pressure
difference across the barrier which further contributes to the
lengthening of the sheltered region. This also promotes the
breaking down of the counter-flowing eddy in the sheltered
bubble. The counter-flowing eddy upwind of the barrier alsoc
vanishes as the pressure difference across the barrier is
reduced. :

Plate (1971) quotes classic field studies by Nageli (1941) and
wind tunnel experiments by Blenk and Trienes (1956) which showed
that, for a maximization of near-ground wind speed over the
longest downwind distance, a medium barrier porosity (30 - 50%)
~is needed. The zone of at least 20% reduction in wind speed near

the ground extends about 25 H in these conditions (Robinette
1972). As the porosity of the barrier is decreased the magnitude
of the reduction of near-ground wind speed tends to increase, and
eventually a counter~flowing eddy develops in the sheltered _
bubble. At the same time, the increased pressure gradients due
to the reduction in barrier porosity cause the point of
reattachment to move closer to the barrier and the inclination of
the separation streamline, as it approaches the ground near the
point of reattachment, also increases. The downwind length of
the sheltered zone is reduced.

On the other hand, if the porosity of the barrier is increased
from the optimum 30-50% level, the downwind length of the
sheltered zone increases to a maximum at about 35 H but the
reduction of the near-ground velocity becomes increasingly
negligible. These patterns are shcwn in a general way on
Figure 9.

The bottom panel (D) of -Figure 9 illustrates another feature of
vegetation wind barriers. If they are quite narrow and lack
near-ground foliage, they can cause a near-ground jet to form.
When this effect is strong it can lead to scour of the sand
surface beneath the vegetation and may even threaten the health
of the vegetation.

These observations of the behavior of vegetation windbreaks are
in general agreement with studies of sand, and snow fences.
Hotta et al. (1987) provide a good review of the literature on
both field and wind tunnel experiments with snow fences. No
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really comprehensive study has been carried out in a way that
permits identification of the optimum porosity to create the
greatest near-ground wind reduction over the longest downwind
length. Different investigators used fences with different
discrete slat arrangements along with various sand sizes, wind
regimes, fence alignments, experiment durations, and measurement
methods (Tani 1958, Kimura 1957, Nishi and Kimura 1966, Jagschitz
and Bell 1966, Monohar and Bruun 1970, Savage 1963, Woodhouse and
Savage 1969, Gage 1970, Dahl et al. 1975, Phillips and Willetts
1979, and Iversen 1981). These studies show that sand fences
(and snow fences) act like vegetation wind barriers so that the
most protection is effected when the counter-flow eddies are
minimized, the width of the sheltered area is long and the
. effective wind reduction is acceptibly high to promote dune
. growth. This occurs when the fence porosities are in the 30-50%
range.

. As noted earlier, there is a problem in combining the approach
used for analyzing the uniform flow conditions to that used for
transitional flows because the researchers studying crop air
exchanges and windbreaks have taken different approaches.
Although there are scattered detailed studies of specific
conditions that have been carried out with rigor (eg. the
application of numerical models) there is no consistent basis of
comparison. '

In the absence of an established common basis for quantifying the
attenuation of wind on sand transport by continuous and narrow
vegetation belts, a combined approach was developed. '
The basis of this approach rests on the common observation that
greatest sheltering is developed by a wind break with a 30-50%
porosity and this is similar to the vegetation density which
causes maximum attenuation in a large field of vegetation. This
provides a link to combining the largely judgement-based
assessment of a wind barrier's porosity used by one group of
agricultural scientists with the more quantitative measures
developed in the numerical model of Pereira and Shaw (1982) which
associates the drag parameters with the product of the plant drag
coefficient and the leaf area density (C,.PAI).

The ratios of the vegetation aerodynamic parameters z /H and d/H
are used to estimate the product of C,.PAI for the observed
spacing of plants in a wind break. This value is then compared
to the value associated with the greatest drag (ie. the highest
zo/H). When the estimated product for the observed spacing is
above the point of greatest drag then the length of the sheltered
zone is reduced proportionally from 20H to 10H depending on the
ratio of the difference between observed and maximum common ,
spacing to the maximum common spacing. On the other hand, if the
estimated product C,.PAI is less than that for maximum drag then
the wind attenuation is adjusted in the same way that it is for
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the fully developed flow case and the maximum sheltered length is
lengthened towards a maximum of 3SH.

The result of the analysis is a sand transport rate calculated
for the sheltered area and compared to the bare sand case. The
length of the sheltered area is also calculated.

Some auxillary information is of value in using the results of
the above calculations. If a line of vegeaticn parallel to the
beach is shown to be an effective windbreak then the effects of
natural or man-made gaps should be carefully considered. Such
gaps will only degrade the effectiveness of .the vegetation line
and if they are wider than several times the average plant
spacing, they can cause a funneling of the near ground wind
speed. Robinette (1972) indicated that such funneling can
increase the wind speed immediately upwind of the gap by about
20%. This can be sufficient to cause a local scour hole with a
width approximately equal to the gap in the line of vegetation.

All of this shows that even narrow zones of vegetation can be

quite significant in contributing to long sand retention on the
upper beach and in the dune system. '

Effects of Local Slopes and Terrain

Up to this point there has not been mention of how slopes and
terrain effect the analysis of the physical effects of vegetation
on sand transport and dune systems. The effects are rather
complex. Furthermore, these effects have been routinely avoided
by researchers concerned with the attenuation cf the wind by crop
and forest canopies because they needlessly complicate
experiments. It is, however, necessary. to discuss these effectsg,
at least qualitatively so that proper judgement can be used in
applying the methods of analysis described in this report.

~ If a wind is directed onshore across a broad and flat beach it

will develop a logarithmic velocity profile. When the air flow
encounters a slope behind the beach the vertical structure of the
boundary layer changes. The slope introduces form drag which is
realized as a pressure gradient. As the air flows upslope the
streamlines converge, the flow accelerates, and the pressure
falls. Hence, there is a pressure gradient in the direction of
the upslope flow which tends to further accelerate it. This
favorable pressure gradient exists close to the ground so that
the increase in velocity is not uniform with height. The
vertical velocity profile is no longer a simple logarithmic
function and the methods for analyzing wind attenuation in plant
canopies and aeolian sand transport, which depend on a simple,
‘predictable form of the vertical velocity profile, can no longer
be rigorously applied.
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Figure 10, taken from Bowen and Lindley (1974) illustrates the
near- ground over speeding effect from measurements made on a 13 m
high slope of 26° and a nearly vertical cliff 9.5 m tall. The
over-speeding was confined to a height of about twice the ground
level difference (z'') and extends about 12 z'' downwind of the
slope top. These results are qualitatively similar to what can
be expect for other forms of local relief but accurate
predictions depend on many factors including the wind speed, the
roughness of the ground upwind of the toe of the slope, the
density stability of the boundary layer, whether the slope is
vegetated etc.

There are many other effects of local topography which affect the
wind speed and its vertical- proflle The wind is often funneled
into gullies and low areas, it is disturbed by large obstructions
such as buildings, and the air flow can become detached at the
crest of dunes causing a counter-flowing eddy in the lee. All of
these factors are too complex to be treated in a comprehensive
analytical method. The engineer or scientist is left to use the
analysis techniques presented in this repert along with good
judgement in applying them to complex real problems. .

Coastal Scale Effects

In evaluating the physical effects of vegetation in coastal areas
it can be important to consider large scale processes which may
be alterkd as a result of changes in vegetation. Ideally, there
should be an analytlc method which predicts sand transport,
erosion, and deposition by the wind over zones with length scales
of several thousand of feet. This methed would be able to
account for the changes in the near-ground air flow brought about
by both the topcgraphy and the differences in the vegetation. Of
course, the development of this procedure constitutes a rather
large undertaking and is not available at this time. However,
there have been many studies which address elements of this
procedure and which provide insight into the results that are
possible. A starting point involves considerations as simple as:
"From the point of view of preserving the coasts against long
term erosion, what physical features should be considered a
dune"? "What combinations of winds and sand transport cause and
maintain coastal dunes"? "How does vegetation in one part of a
dune field effect the air flow long distances downwind"?

A reconnaissance was made to evaluate the type of features which
can be designated as dunes as a first step in addressing these
coastal scale processes. The viewpoint adopted was not purely
that of a coastal engineer or coastal geomorphologist who might
tend to restrict the term dune to only those features which
originate solely as a result of aeclian processes. Instead, the
consideration was based on the idea that any feature which tends
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to collect and retain wind-blown sand can be included in the
pragmatic definition of the term 'dune'.

Florida Department of Natural Rescurces beach topographical
profiles were obtained and plotted for Walton, Manatee,
Charlotte, Collier, Dade, St Lucie, Brevard, Flagler, and Nassau
counties as a sample of the general coastal environments around
Florida. A detailed description of the analyses of these data is
presented in Appendix D. The analysis supported a classification
of the dune, and dune-like, features as being represented in five
general categories which bear little resemblence to the classical
dune forms common to desert areas. These five classes are: 1)
multiple parallel to sub-parallel sand ridges generally aligned
with the shoreline, 2) a single very elongated ridge parallel to
the beach, 3) one or more elongated ridges atop the low wave-cut
cliff or bluff behind an active beach prism, 4) low hummocky sand
hills, often with nearly irregular plan-view patterns, 5) -coastal
relief highly modified by roads, structures, and other unnatural
features. The characteristic dimensions and slopes of these
features were tabulated as a first step in determining methods
for rigorocus study of air flow and vegetation distributions on
the coastal length scale. These data are included in Appendix D.
The analysis of coastal scale processes was delayed for a future
phase of this work in agreement with the Division of Beaches and
Shores contract technical representative to allow substantial
effort to be directed at the lccal scale processes.
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Figure 1 - The logarithmic 'velocity profile as a linear (a) and a
semi-log plot (b)
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Figure 2 - Velocity profiles before and after the grain transport
threshold is exceeded . ‘
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E"igure 8 - Diagram of flow disturbances and boundary layer
development around a non-porous barrier
{from Plate 1971)
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Figure 9 - Typical sheltering by vegetation strips. A: non-porous
barrier, B: barrier with low porosity, C: barrier with
moderate porosity, D: wind jetting under barrier
foliage (from Robinette 1972)
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Appendix A -- Vegetation Aerodynamic Parameters

The previous discussion of air flow through plant canopies shows
that vegetation is effective in reducing the near-ground wind and
consequently the asscciated sand transport. The present theories
for predicting the effect of the vegetation canopy on the wind
profile depend on aerodynamic parameters which must be measured
for each plant type and community. These measurements must be
performed carefully in the correct conditicns to provide general
results and therefore very few measurements are available in the
literature. PFurthermore, the understanding of the roles of many
of the aerodynamic parameters in defining air flow was not
recognized in the early stages of this research. Thus, several
years went by with only incomplete data sets being produced, many
with key parameters omitted.

The intent of this study is to understand the role of coastal
vegetation in modifying the air flow and sand transport regime.
The research on winds in plant canopies was motivated by
agricultural and forestry concerns. Therefore, there are no
direct measurements of the aerodynamic parameters for coastal
vegetation typical of Florida. 1In order to provide a rational
basis for analysing these questions before such measurements for
coastal vegetation become available we have applied the concept
of similitude, which is often used in problems of fluid flow, and
estimated the aerodynamic parameters for the coastal plants based
cn the largest amount of measured data for non- coastal plants
that could be assembled.

Although there have been several published attempts to relate
some of the aerodynamic parameters to physical properties of the
plants (or somewhat predictable flow scales such are the mixing
length amid the foliage), none have proved successful. As a
result, the estimates were based on judgement, guided by a good
understanding of the underlying physics and assisted by the
results of the numerical model developed by Shaw and Pereira
(1982). Their results associate z /H and d/H with the product of
the plant drag coefficient and the leaf area density as adjusted
for the vertical distribution of foliage.

Table A-1 shows the total ccllection of measured data which were
assembled. Almost all of the data are for crop plants or forest
trees but some trees are the same as those found close to the
beach in some places in Florida. Table A-2 lists the common dune
plants of Florida and many of their physical characteristics.
These characteristics were cbtained for the literature where
-possible or estimated by experienced botanists. The phy51cal
Characteristics such as typical plant height, diameter, spacing,
leaf area, leaf area index, etc., and photographs where
available, were used to assess the similarity of the unmeasured
coastal plants to the plants with measured aerodynamic
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parameters. The assigned values of z /H, d/H, a, and the typical
close spacing are shown on Table A-2.

A method was developed to provide for different spacing of the
coastal vegetation in computing its effect on sand transport.
Shaw and Pereira (1982) provide graphical results that relate

z /H and d/H to the product of the leaf area density and the drag
coefficient for the plant type. The leaf area density is easily
adjusted for changes of the plant spacing and functions fit to
the graphs were used to adjust z,/H and d4/H.

The modification of the exponential profile attenuation
coefficient was accomplished in a similar way. Cionco (1978)
provides the only published data. The attenuation coefficient is
related to a planting density which is poorly defined. The data
are available only for different planting densities of corn, in a
set of field measurements and for different densities of wooden
pegs, in a series of wind tunnel measurements. The data show
similar trends to each other with the maximum attenuation
occurring at about 1.5 times the closest spacing. At closer
spacing the canopy is relatively impenetrable and the air flow
tends to slide over the canopy as if it were a 'new' surface.
Although these data are very limited they are the only source
available and therefore were used as the basis of an equation
which was fitted to the experimental results. This equation is
used to adjust the attenuation coefficient for different plant
spacings.



TABLE A-1 AERODYNAMIC PARAMETERS AND VEGETATION DATA Page 1/4 _
[ POLSHNESS
" PAl (1ot area) ELENENT
YEGETATIOK 3oy 4oen LAl (LAL/R)  BA (HA) {ead mccw,_nm NOTES .
corn orags 4 0.5 0,012 510
orass 2 256 0.018 310
arass Iy 42 0,019 >t
oracs 3 20,01 3-10
orass 2.9 2 Wilson, etal (82) ttotal ares index = total surf, areafunit ground area =
rass ¥ 55,000 plants/ih
Grass £ 1693 sq. ca/plant
orass Hi-e00 S-1¢ {various)
orass 280 iR Cionca (B3)
L4g 061 Z.8 Uchi jina & Wright (63) # unpublished; from Inoue (E3)
4.2 Coaper (79)] )
0,08 Wilson & Skay (7))
orass 0 0 Raynor (71),
orass 7 ] Frifschen, btal (85)
. ]
Kochea 6rass 20 10 0.50 Fritschen, Tw (83}
aats arass % B t6) .8 o ' Cienco (83)
qrass 4.2 Cooper (75}] °
qrass 30-100 : 1.0 {various} & leaf length = 25 ¢
tice H Con Tseng & qm:w £ booting stage
4.5 ) & heading stage
3.8 K & ailk-ripe stage
3.2 \ t dough-ripe stage
B3 % 0,59 ” Raitani (78) b ey emergence stage
&0 5 4,58 ; ¥ young ear forsation stage
22 : 1.0 (various) ,W t leaf length = 30 ca
75 2043 3,65 ' 10 Inoue & Uchijima (79) & 240, 000/HA in 30 ce rows; spacing 14¥30 o
8 0.59 Baitani (77)
4 0,67 2,18 024 Nakagawa (5f '
1,52 Cionco (83)
rus arass 1t 80 Haitani (78] ¥ harvest stage
1,89 ox & Ei 87} t irrigated-early
4.5 tirrigated-late
orass 177 t dryland-early
arass 2,03 t dryland-late
arass i ], artichoke
arags (various) ¥ leaf length = 5-18 ¢
grass 5] BE a2 Cionco (B3
vheat prase 0.63 Raitani :mm kripening stage
araes 0,60 . ¥ ripening stage
orass 0.2 12 Cionca (831!
arass 1.0 {varinusl tlagf length = 4] <8
aracs 3 Caoper (75)
orase 25 7 t Legq (74) bosaaiizg 15 betueen rows
orase

Ratnes (71)




TABLE A-1 AERODYNAMIC PARAMETERS AND VEGETATION DATA

Page 2/4

5 ROUBHNESS
PLANT h SPACING 1o i mmammmnn fif s PAl (lob areal ELEAENT  DRAG COEF.
VEGETATION TYPE (ca} {tal {cal  Iofh /h ALFHA ug canopy  down LAl (LA 58 (HA) Sa/s (ca) {4 ©'d  Imax/h SOLRCE NOTES
alfalfa "2a* shrub 80 0,63 Fritschen, etal (B5)
alfalfa *a° shrup i 0.51 B
bean ehrub 118 10.8  §8.5  0.092 0,75 6.2 Thea (71)
bean sprouts shrub 104 60 0,000 0.60 \, Rider (36) t all plants @ mature bt
£
cotton shrub 132. 13.8 0 0104 0,38 J Gtamhill % Fuchs (67) + gaturs plants
shrub 126.9 b B2 0.0%9 0,43
shrub 47 2580 13 43 9,298 0.9 11 14 0.0 Jarman (39) t irrigated plants
shrub 72 50480 14 4 019 (.83 N 3 0.01 + 3 plants/hole
shrub 30 50180 14 45 0.173 .36 1.8 4.5 0,0 * rows vers 30 ca apart
shrud 8% 25480 14 45 0,203 0.63 2.3 34 0.4 tast fully asture
shrub 77 G080 14 i3 6182 0.58 kA 4.2 0,01
shrub 91 50x80 14 45 0,154 0,43 6.1 ] 1 0.01
Creosote bush shrub 200 130 0,000 075 Fritschen, aw. (83
eas shrub 0 B 00 04 , Rider (56 1
“
saqebrush shrub 33 73139 6.4 12,2 0.121 0.23 ) 0.23 Hagen & Lyles (88)
N shrub B8 73139 5.4 5.4 0079 080 0.29 -
- - :
soybean shrub 100 44 76 0044 076 0.3 0.1 Cionco (83)
shrub 0.87 Cox & Joliff (87) & irrigated-early
: shrub 6.8 ~ t irrigated-late
shrub . 0.77 \ U t dryland-early
shrub n2 " | & dryland-late
shrub 7,583 : , . (various) t leaf length = 7.5-15 ¢a .
shrub 0.12 Baldocchi (B2) % in Meyers & Pav (86)
' yucca shrub 44 73218 5.3 70120 0.16 20 Hagen & Lyles k 3) ¢ d and Zo values are taken from :nsmm/ﬁ_%;n these to
shrub 79 T8 6.3 39,5 0.080 0,30 b be functions of PAI & Cd -
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3 ROUBHNESS
FLANT b SreCInG To b mmmmmeee Bp mmmeemees FAl (lot area) ELEMENT  DRAG COSF.
YERETATION TYPE ica) frg} ite)  {cw) Ialh Bh ALPHA up cancoy  down 1A (LAl/R) 5B 1HA) Shiz (cq) C¢ C'd  leax/h SOURCE NDTES
citrus tree 360 730619 0.000 0,49 2.54 Brooks ¥ m.v__:x {55)  # distance betveen canopies 90 - 180 ca
citrus grove tree 8.9 Hirane, @L; 1N £ 13 yrs, old 8 10,000 trees/HA
tree 76 | £5 yrs. old B 10,000 trees/Hh
tree 4,7 ‘ 13 yrs. old @ 1256 trees/HA
tree 0.9 5 vrs, old € 1250 frees/HA
tree 71 | + 1-3000 trees/MA; aust cosson planting
treg 30 2 .50 .44 i
orange trae 425 400x400 404 86 0035 0BT 6.5 4.5 0,04 0.7 Kalsa & mzu_._s: (71) & trees 33 yrs, old
Douglas Fir tree 2300-3000 Hightshoe o) £ leaf length = 2.5-4 ca; tyoical spread = 6-10 #
tree 1580 9 0.006 _ [ ¥ 60 vrs. ald
: tree n .7 ol Cooper (73} + 5 yrs, old
tree 1000 9 0.009 _, +25 yrs, old
tree 1420 3 .07 Forghetti Amm; # plantation
fir tree 3000 400 000 70 fritschen, «mzu (83)
e tree 1500-2000 ' 7.3 Hightshos (78) & leaf length = 7,515 cs; typical spread = 10-13
qua-gaple tree 4.4 0.07 Cienco as,_
larch tree 1040 300x300  57.1 @03 0.085 078 C 4% o.ofd Allen (88) H , + 23 of needles dropped but rest well spaced
tree 126.8 £33 | # data for fully dropped needles ignored
tree 8.3 70 # .
tree 39.7 M4 S :
tree 06,7 494 !
tree 2 IR
tree 12,4 63
tree B e
free ave = 9.8 B9t '
tree 4.1
larch plantation tree 1040 Mo78 0,082 6,70 | .16 Caoper (73]
tree 1300-2300 . Hightshoe QS ¥ leaf lenath = =4 n
naple-fir tres 4 Cionco 88_
oak tree 150 5.3 0.043 Cooper QEN £ sapling
tree 1000 5.8 0,006 “
tree 2000-3200 {5 Hiahtshoe 78) t leaf lenath = 4-10 cay tvpical spread = {5-23 &
oak-gun tree ' 2.7 0.19 Cionco (83)

TREES, continued.,.

|




TREES, continued...

TABLE A-1 AERODYNAMIC PARAMETERS AND VEGETATION DATA Page 4/4

H ROUGHNESS
PLANT b SPACINE o ] mmemenmns B aemeemees PAL (ot area) ELEMENT DRAG COEF.
VEGETATION TYPE {tn) iz8) (en)  (em)  Io/h 0/h ALPHA up canepy  dovn LA (LAI/M)  SA (Ha) Shfs {cs) €d (' Imax/h mg:mﬁ NOTES
pine tree 1030 1201150 100 800 €.095 0.76 0,68 0,15 b Raynor (71} ¥ forest
tree 1474 trees/ha
tree E trunk dist, & breast nt, 3.6 - 33,3 o
{ree ¥ lovest living branches 2 - 4 a above oraund
tree # spacing is as planted in 1939
ree 2.3 . 0.3 Halldin & Lindroth (B5)¥ projected needle area 2.5 (thip}
tree 1850 OO0 0089 6.69 Debruin (84)
tree 1856 130 007 ant Folion & Hoore (83)
tree 70¢ 490 0,000 070 Fritschen, etal (83)
{ree 00 460 0,000 (.66 :
ked Fine tree 2200 1.1 0.000 0,0087 Hartin (71) # density 60 - 703
HE 200 19,3 0,000 0.0088 . } # hotton of canopy € 10
tree 2200 20,0 0,000 * forest
tree 2200 19,9 0,000 0.00% , )
tree: 2100 2,2 0000 0.0092 .
tree 2200 198 0,000 0.00%0 . '
free 2200 197 0,000 0.0090 '
' free 2200 20,2 0 0,000 0.0092 '
tree 2206 w0000
tree 2200 ave, = 17,273 6.0079 0.23 ! 12,1 !
Scof Pine tree 0.14 o : Cionco (83) .
Seuthern Pine tree 0.2 . P
Red Haple tree 23003000 : 3-10 Hightshoe :mv ¥ leaf length = 3-10 ca; typical spresd = 15-22 &
tree 1300 5.13 0,004 Wang & Miller; {87) ¥ 30 yrs. old
1
Saltredar tree 200 150 0000 075 Fritschen, mo_l (85 .
. tree 00 350 000 0.58 ~ .
spruce tree 9.7 . Cooper (75) F 25 yrs, old
iree - , 10.6 | 60 yrs, old ,
tree 1500-3000 ! . 0.5 Hightshoe (78 ¥ Leaf length = 1-2 cay typicel spread = 6-10 2
tree .7 0.13 Cionce (83)
tree 1050 136.5 €72 0,130 0,64 1.8 10 0.14 Landsberg & Jeaes (71)




TABLE A-2 COASTAL VEGETATION AERODYNAMIG PARAMETERS

5 LEAT e pLaNT
FLANT ] SPACING Pal tlot area) LENGTH  Apes 14, RIGHE
VEGETATiiN TYRE {igt Hd bik LAl ADsRY  SA tsq. cB)  SA/s (8 (sq, ca) (cp)  FLEXIBILITY HARDINESS PLANT NOTES

Dune Prairie Brass orass 130 4 004 0.5 460 0,031 3010 2090 1,440 137 256 25,3 Righ ~ hich corn + carn valuss used
Salteeadow Cordorass  qrass #1227 LI 6k GO0 0,05 n 145 2,497 b1 37122 hieh nich rice £ 1ice values used
Sea Dats rass 182 60 0120 080 4,00 0.022 560 1850 6,300 60 "4h 13 high high vheat  wheat values used )
Beach Bean herb 15 12 000 0.5 2 LB 0,25 b20 14860 0,042 7.8 ki 13 aod high touesh ¥ cunflover values used
Beach Croton herb 7 50 0,120 0.5 0.5 1,68  0.024 17 3750 0,031 5.2 13 15 and ot pushel backets # shrub default values use
Eeach Horning Glery  herb 15 noon0i 0,53 1.3 4,37 0.z88 1630 732 2,168 1 ‘B3 6.1 8o high  waterselon  # sunfiover values used
Dune Sunflover herb 90 %0070 08 1.3 .60 0.018 2930 550 0,501 1.6 59 o0 pod high vaterpelon  # sunflover values used
Railroad Vine herh {5 24 000 050 1.3 4,90 (.327 1115 450 2,424 10 4 7.6 wod h1oh watermelon & sunflower values used |
Gea Blite herb T& 6 0120 0.56 0.5 2,40 0,032 W7 3N 0150 3.2 2.8 13 lov 21 yooden pens £ shrub fefault values used
Sea Purslane herb 15 30 0120 0.5 0.5 L2 0.080 280 %40 0,298 3.8 2.8 15 eod high  wooden peas # shrub default values usey
Canphorveed shrub j( 9% 0175 0.5 03 L2 0018 500 8430 0,039 5.2 8.4 7 ead high soybean  # shrub default values used
Cocoplup shrub 300 480 0,080 0,80 1.3 1000 0.033 93000 1BEOOC 0,500 5. 193 460 lov high junale  # poor Sam_:,mg-m&:m:mq_;m sade {o defauit values
Conradina shrub 90 130 0128 0.3 0.3 L2 6,013 443 22200 0,108 2 0.9 80 god ad + default shrub values :mmb
Gray Nicker Bean shrub 150 0,125 0.5 0.5 7.0 0.047 111500 5.2 13 460 aod high citrus & poor comparison—-shrub défault values used
Prickly Pear Cactus  shrup 90 300 0120 050 0.4 2,40 0,027 2150 % 2312 il 1430 24 lov high bushel baskets & erect plants with firs, flat paddle-shaped leaves
Roseaary shrub %0 18 015 0.5 0.5 L 3500 33400 0,105 1.2 3.1 7 eod lov  plastic strips # poor cosparison--shrub %W:__: values used
Saw Palmetts shrub 180 15 &1x 50 0.6 420 0,028 {7400 23400 0744 7 600 90 eod high bushel baskels # comparisan based on vuccy and cotton/alfalfa
Gea Grape shrub 240 240 0.100 .70 LS 10,00 0,042 93000 186000 0,500 2 410 244 low high jungle  +# spreads hor.; auch vind shear across surf; comp, data, eed
Sea Myrtle shruby il 150 0128 &6 0.3 360 16900 23200  0.728 18 9.3 167 ot high sunflover  + sediua level of cosparable data .
Spanish Bayonet shru 213 W 00 650 L0 3,20 0,015 13500 9330 0.144 5 269 0 low high yucca ¢ good comparison with .é?T data

r
Australian pine tree 3000 800 0,090 0,70 2.7 23,60 836000 37600 2250 M 500 low high spruce £ d/H and o/ reasonable ‘Hogm:moi alpha, poar
Bay Cedar tree 2400 W 6L 064 L3 1060 0.004 37200 23200 1.603 38 1 130 lov (L spruce  + values for spruce used
Catbage Pala tree 2300 800 0.070 0,50 L3 L1 146300 371600 ~ 0,34 n 460 low high oak + values for suntlover use
Chapaan's bak tree B0 180 0.060 0.70 7 1610 66900 33400 2,003 16 12 183 loy high 0k  grows vilyrile Dak; dens? thickets: values like Live Dak
Cotonut Pale tree 8T 7 0.0M 0.5 L3 1250 418000 580500 0720 - 460 0 sot and t values for sunilover used
Hyrtle Qak tree 300 120 0,000 070 20 %80 0.033 37200 19500 1,908 7.6 12 152 lov high oak & dense thickets: spacing sealler than plant dia: poor comp.
Sand Live Dak tree 500 40 0os0 0,70 27 18,5 443900 209000 2,133 5.2 13 600 Loy high nak ¥ poor data |
Sand Fine tree 500 460 0090 0,70 23 1260 334400 200700 1997 1.6 500 lav hieh pine # 4/ and lo/¥ reasonable Jatasalpha, poor
Slash Pine tree 1830 00 0,090 070 25 10m 831800 836000 1,067 bal 120 low righ =nruce  ¢/H and 1o/ reasenable datayaloha, poor
Southern Magnolia trag 164 904 009 0.68 Lo 1410 1170500 836000 1,400 13 100 lov hion [T ] # not often in coastal sitwations: only in pashandle
Southern Red Cedar tree 760 B0 0.07 070 27 167 464300 371600 1,200 8 oo tow hish christeas tree # pine, Salt Cedar, and larch velues used
Hax Myrtle tree SH 280 [0 DI W 1.0 50 0,007 79000 75740 1.050 10 2 213 Low high aak . !
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Appendix B -- Recommendations for Future Work

There are clearly two major areas of future work that are
essential to the successful application of the results of this
study to the permit review procedures of the Division of Beaches
and Shores. One is to develop and experimental program,
including both field and wind tunnel measurements to verify and
extend the methods which have so far been entirely based on
literature values and relationships.

The other major need is to extend this work to the coastal scale
so that the larger scale effects of changes in coastal vegetation
can be identified and quantified. It was not possible to
accomplish this until there was a proper understanding of the
role of coastal vegetation on the local scale and-the results of
this study largely provide this. Much of this work can be
acomplished with properly selected numerical models, supported by

a carefully designed field effort to verify and calibrate the
models. ,
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Appendix D -- Dune Forms of Florida Coast
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Type 2 - Single Long Sand Ridge
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Type 4 - Low and lrregular Sand Hills



FLORIDA COASTAL DUNE PARAMETERS

FLAGLER (CLASS=2)
lb h’b 1bb hbb lsc hsc lwf 11! 11 12 hl hz h3 lsl hsl hmax hlow

50 2 6 0 0 0 8 2220 0O 0 16 0 O 0 0 0 7.5
?67 5 50 10 O 0 20 208 0 0 12 0 O O O O 2.5
§é34 7 45 12 O 0 8 256 0 0 14 0 O 0 0 o0 5.0
Eéls 5 55 11.50 0 10 208 0 0 1 0 © 0 0 o0 7.0
?622 1 S0 3.5 50 6.548 176 0 O 25 0 © 0 0 0 8.0
?6471.5 50 5.5 32 4.5 48 82 0 02350 0 0 O O 9.0
?6:: 3 50 5 50 3 80 72 0 0 26 0 0 0 0O 0 20
R-

FLAGLER (CLASS=3)
1b hh 1bb hhb lsc hsc lwf 11!. 11 12 hl hz h3 131 hsl hmax hlqw

100 9 50 12 16 7 20 52 0 O 24 O O 16 21.5 20.5 '19
R-65

72 7 8 10 o0 O 32 44 0 0 24 0 0 O 0 23 18
R-67
50 2 50 3 50 2 24 9 0 0 205 0 O 50 9 20 19
R-80
50 3.5 50 10 322.5 16 88 0 O 2.5 0 O O 0 21.5 19
R-82

50 2.5 50 9 5625 16 176 0O O 27 0 O 32 18 27 26
R-91 :

50 5.2 40 10.5 24 2 20 65 0 0O 21.5 0 O 16 17 22.5 19
R-97

72 %9 30 9.5 24 28 16 24 0 0 22 o0 O 12 15 22 20
R-98



FLORIDA COASTAL DUNE PARAMETERS (CONTINUED)

ST. LUCIE. (CLASS=1)
1b hb lbb hbb lsc hsc 111: llf. 11 12 hl h2 h3 151 hsl hmax h].c:m

50 4.8 50 11.5 © 0 16 0 40 40 14.5 13.5 145 0 0 0 O

?615 5 48 10 0 0 20 0 68 40 12 14 11.5 0 0 0 O
§£161.6 56 8 32 4.4 12 0 52 24 14 12.8 13.6 0 O 0O O
iélgh.ﬁ 0 o o0 0 72 0 96 96 12.5 12.4 14 0 0 © VO
§é213.5 50 8 28 2,540 0 52 8 14 10.8 11.2 0 0 0 O
§6§i7.2 32 8.8 16 0.4 48 0104 64 15.5 106 15.5 0 0 0 O
R-

48 5.6 24 8.8 0 0 40 0 152 124 11 7.2 7.2 0 0 0 O
R-35

ST. LUCIE (CLASS=2)

1, by Ly hy 1, b L, 1, 1, 1 hy hy hy 1, hy, hy, hy,,

32 2 55 8.4 0 0 32 225 0 0 15.4 0 0 0 O O 4
R-58

50 3.2 50 10 0 0 8 240 O 0 11.2 0 0 0 0 0 4.8
R-59 '

50 2.4 O 0 0 0 80 192 0 0 1.2 0 0 0 0 0 3.2
26604.5 40 11.2 0 O 8§ 274 O 0 124 0 0 0 O O 2.8
?670 4 50 9.2 12 3.2 10 208 O 0 1.0 0 0 0 0 0O 3.6
26753.2 56 9.6 0 0 36 152 O 0 10.0 0 6 0 0 O 4.5
5-86 0 0 0 0 0 100 100 O 0 13.2 0 0 0 0 0 8

R-99



NASSAU (CLASS=1)

FLORIDA COASTAL DUNE PARAMETERS (CONTINUED)

11! 11 l2 hl h2 h3 131 hsl hmu

l!:: hb 1bb hbb lsc hsc 1w£
hlaw

50 2 45 3.5 155 8.5 25 O
R-33

50 4. 50 3.5 50 1 150 0
R-36

50 1 40 1. 110 2 90 O
R-42

56 1.5 100 3.5 50 2.5 65 O
R-46

100 4 100 6 45 2.5 60 0O
R-53

100 1 50 3 110 4.5 55 O
R-63 '
50 2 50 2.5 50 1 65 0
R-73

NASSAU (CLASS=2)

1, by 1y hy 1, hee L 1
100 3.5 65 7.5 35 2 140 110
R-10

50 2 50 3.5 40 5 160 65
R-11

50 1.5 25 2 25 2 85 80
R-12

50 2 60 7 50 3 55 75
R-17 .
50 2.5 48 7 251.5 150 125
R-18

80 5 36 5 40 3.5 90 115
R-19

50 2 50 3.5 50 3 30 90
R-20

6

75

100 17

35

62

85

45

80 230

75

25 16.5
17
50 15.5
58 16
85 AiQ.S
16

- 8.5

By by
21 0
16.5 0
9.5 0
14 0
14 0
11.5 0

11.5 0

20,5 23 0 0 O

20

16
17.
lé.
20.

17.

.3 22 0

13.50
514.50
5 24 0
526.50

526.50

0

13.5

0



MANATEE (CLASS=2)

L by

50 2
25 &4
160 2
25 2
50 3.5
82 7.5
25 2

MANATEE (CLASS=4)

lbb

5 2 25
50 4.5 16
25 2.5 25
35 2 15
R-36
80 4 20
R-41
55 4 225
R-44 .
50 5 30
R-52

FLORIDA COASTAL DUNE PARAMETERS (CONTINUED)

CHARLOTTE (CLASS=1)

246 2
R-49
20 2.5
R-50

R-51
25 2.8
R-53

26 2.4

R-54

1bb

32

50

20

hy  h; hy 1; hy hghyee

hbb lsc hsc 1wf 111 11 lZ hl
6 20 1 90 100 O 0. 11 0 0
0 15 2 80 42 0 0O 8.5 00
6 202.5 50 9 ©0 010.5 0 O
& 20 2 48 28 0 0 12 0 O
0 201 18 80 0 0 10 0 0
0 0 O 17 60 0 0 11 0 0O
0 0 0 25 150 0 O 11 0 0
L, hy Ly by Le hye Le Lip 1 1,
4 0 0 150 0 1.25 9% 6 9
4 0 0 40 0 175 115 4.5 9.5
4 0 0 65 0 60 65 10 10.5
2 0 0 30 0 25 100 5 5.5
3 0 0 110 0O 65 88 12 10
4.5 0 0 40 0 155 0 12.5 2.5
6.5 0 0 48 0 150 120 7.5 7.5
hbb 1sc hsc lwf ]'lf 11 12 hl hZ
4,5 16 0.8 16 0O 168 200 7.2 6.4
4.8 16 1 40 0O 88 160 8 9.6
0 0 0 64 0 120 80 5.2 6.6
3.6 32 6 28 0 104 36 6 7.2
3.6 0 0 80 O . 85 32 6 8.4
4 112 2.4 16 0 164 72 10.8 2.4

16 0.4
R-55

36

COQOO0OO0

h2 h3 151 hsl hmax hlow

0 0 7 R-57
0 0 7.5 R-58
0 0 10 R-58
0 0 10.5 R-63
0 0 8 R-64
0 0 9 R-65
6 0 8.5 R-67

8 00 0 0 R-3

6 0 0 0 0 R-&
S0 0 0 0 R-5
50 0 0 0

8 000 0

h3 lsl hsl hmaxhlow

10 0 0 0 O

2.6 0 0 0 0O



FLORIDA COASTAL DUNE PARAMETERS (CONTINUED)

CHARLOTTE (CLASS=2)

lb hb lbb hbb 1 hsc lwf 111 11 12 hl hz h3 lsl hsl hma.x hlov

sc

0 0 0 0 0 0 40 36 0 0 4.4 0 0 0 O 0 3.2 R-32
48 6 36 5.6 32 1.2 12 248 0O O 84 0 O O O O 3.6 R-35
50 7.2 36 4.8 3 2 44 8 0 0 9.2 0 0 0 0 0 6 R-36
40 3.2 32 4.8 20 1 24 88 O 0O 7.2 0 0 O O O 5.8 R-39
44 3.2 28 5 32 1.6 28 26000 0 84 0 O O O O 2 R-40
26 2.8 36 4 32 2 24 96 O O 84 .0 O O O O 5 R-41
48 4.8 40 3.6 20 0.8 0O 164 O O 4.8 0 0 O O O 2 R-47

CHARLOTTE (CLASS=4)

lb hb lbb hbb 1sc hsc 1wi 1lf 11 12 hl hZ h3 lal hsl hmnx hlow

50 4.4 50 4.4 0 0 36 0 240 0 9 7.6 0 0 0 0 O R-
48 4 64 4.2 0 0 96 0 160 116 11 6 6 0 0 O O R-
4 4.8 64 4.8 0 0 8 O 152 9611.2 10 4.6 0 O O O R-
32 4 44 3.6 0 O 8 0 120 100 8.8 5.6 6.8 0 0 O OR-1
16 3 64 8 0 0 52 0 32 5211.611.611.2 0 0 0 OR-1
16 1.2 0 O O 0 24 0 128 196 4 8.6 5.6 0 0 0O OR-2
8 1.4 32 5.6 0 0 52 0 100 160 6.4 11 6 0 0 O OR-2

WNNER®OdNO

WALTON (CLASS=1)

]'b hb lbb hbb 1sc hsc lvf _1].£ 11 12 hl h2 h3 131 hsl hmax hlov

60 6 82 9 25 4.5 42 0 75 100 23.5 26.5 255 0 0 O O
R-35 : ‘

0 0 0 0 0 0 45 0 140 50 6 8.5 8§ 0 0 0 O
R-46

30 520 3.5100 5 50 0150 250 25.5 11.5 13 0 0 0 O

R-53
30 3 20 0.5 0 0 30 0 180 75 5.5 8.3 12,5 0 0 0 @
R-69
12.5 2 25 5 0 0 48 0 165 110 8 19 13 0 0 0 O
R-70

0 0 0 0 0 0 60 0 135 100 7 7.5 8.5 0 0 0 O
R-72 '

0 0 0 0 0 0 42 0 155 100 5 14 24 0 0 0 O
R-103



FLORIDA CCASTAL DUNE PARAMETERS (CONTINUED)

WALTON (CLASS=2)

1, by

lbb hbb lsc

75 11.5 25
R-4

9 7
R-5
50
R-14
25
R-19
25
R-23
40
R-27
25 2
R-31

5.5 95

60 9 50

2.5 35 4.5110

3.5 120 7 64

1.5 45 5 92

4 20 7 60

40 6 26

WALTON (CLASS=3)

1b hb 1bb hhb 1sc

50 3.5 0
R-85
50
R-86
50
R-89
90
R-90
40 5
R-94

40 5
R-105
12 2.5
R-114

0 100

4 60 6.5 65 1

4 80 8.5 42

5 125 9.5 50
25 5 0
60 7

37 5

1

t 1+

5.5

1.5

8.5

2.5

1.5

SC

7.5

5.5

14.5

0.5

(2%
w

1wi

75
35

65

70

30

lwi

85
50
60
13A
85
95

70

11£ 11

200
280
155
350
180
100

25

Lie

90

250

50

90

70

65

100

h,

0 28 O
0 29.50
0 19
0 25.50

28

27

29.5

50 0O

0

0

131

50

45

50

60

30

0

34

30

14

13

0 2

36.5
38
29.5
35
13
15

31

hZ h3 lsl hsl hmax hJ.ow

0 0 0 24.5

6.5

13

6.5
6

5.5

hlow

36

27

30
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